
ia

PHYSICAL REVIEW E, VOLUME 64, 027105
Dilute Bose gas in two dimensions: Density expansions and the Gross-Pitaevskii equation
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A dilute homogeneous two-dimensional~2D! Bose gas at zero temperature is studied with the method
developed earlier by the authors. This method allows for considering renormalization of an arbitrary pairwise
potential in a self-consistent manner, without the pseudopotentiald-function representation. Low-density ex-
pansions are derived for the chemical potential, ground-state energy, pair distribution function, kinetic and
interaction energies. The expansion parameter is found to be a dimensionless in-medium scattering amplitude
u obeying the equation 1/u1 ln u52ln(na2p)22g, wherena2 and g are the gas parameter and the Euler
constant, respectively. It is shown that the ground-state energy is mostly kinetic in the low-density limit. This
result does not depend on a specific form of the pairwise interaction potential, contrary to the 3D case. A new
form of the 2D Gross-Pitaevskii equation is proposed within our scheme.
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Theoretical investigation of two-dimensional~2D! Bose
gas is of interest not only in itself but also from the point
view of its possible experimental applications. Indeed,
experimental observation of the Bose-Einstein quasicond
sate of hydrogen atoms has been reported@1#. On the other
hand, the discovery of the Bose-Einstein condensation
magnetically trapped alkali-metal atoms@2# stimulated rapid
progress in optical cooling and trapping of atoms. T
progress gives us hope that an experimental observatio
2D quasicondensation in the trapped atoms is a matte
time @3#. Theoretically, the Bose-Einstein condensation is
sociated with the off-diagonal long-range order, i.e., the n
zero asymptotic atr 5ur12r2u→` ~from the physical point
of view at r @1/An) for the one-body density matrix

^ĉ†~r1!ĉ~r2!&→^ĉ†~r1!&^ĉ~r2!&Þ0. ~1!

Here, ĉ†(r ) and ĉ(r ) are the Bose field operators,^•••&
stands for the statistical average, and^ĉ(r )&5f(r ) is the
order parameter. As was shown by Hohenberg@4# from the
Bogoliubov ‘‘1/q2’’ theorem @5#, in the 2D case, there is n
off-diagonal long-range order at finite temperatures due
the temperature long-range fluctuations of the phase, and
limit ~1! is equal to zero. In spite of this fact, a phase tra
sition is possible to a superfluid state at sufficiently low te
peratureTc @6#. At this temperature, the asymptotic behav
of the one-body density matrix atr→` is changed from an
exponential decay~aboveTc) to a power decay~below Tc)
with respect tor, the phenomenon of the quasicondensat
in two dimensions. For zero temperature, the limit~1! differs
from zero, and, hence, there exists the true Bose-Eins
condensate. Assuming that the condensate does existT
50, in this paper, we consider low-density expansions
2D homogeneous Bose gas with respect to the gas param
na2, wheren5N/S is the density~a number of particles pe
unit area!, and a stands for thetwo-dimensionalscattering
length ~see the Appendix!. Note that the density expansio
for the chemical potential is intimately related to a form
the Gross-Pitaevskii equation, a powerful tool for investig
ing a dilute inhomogeneous system of Bose particles@7#. As
the chemical potential is a continuous function of tempe
1063-651X/2001/64~2!/027105~4!/$20.00 64 0271
e
n-

in

s
of
of
-
-

o
he
-
-

n

in
t
r
ter

-

-

ture, one can expect that our results, obtained for zero t
perature, are also valid at least for the temperaturesT!Tc .
Below we consider the case of zero temperature only.

The leading term of the energy expansion inna2 for a gas
of hard discs was first obtained by Schick@8#, who made use
of the Beliaev method@9#, developed for 3D Bose gas. Re
cently, the Schick asymptotic formula has been proved
orously@10#. To the best of our knowledge, there is only o
paper, by Hineset al. @11#, where four next-to-leading term
were evaluated@12#. However, the authors of Ref.@11# em-
ployed thefirst-order Beliaev approximation for obtaining
the next-to-leadingterms, while in three dimensions, th
second-orderBeliaev approximation is needed for the sam
purpose. Following Schick, they ignored the imaginary p
of the Beliaev equation for the chemical potential@compare
Eq. ~4.3! in Ref. @9# with Eq. ~1! in Ref. @11##. It is the
unphysical imaginary correction to the chemical poten
that determines the range of validity of the first-order a
proximation itself. One can easily demonstrate that in the
case the correction is of the order ofn/ ln2(na2); therefore,
that method cannot yield correct terms of the expansion
this order and higher. At the same time, our method@13#
successfully reproduces in the 3D case the famous nex
leading term for the chemical potential, which ensures t
our results are valid also in two dimensions. Thus, it b
comes clear why only the first two terms involved in o
expansion@see Eqs.~18!, ~24! below# coincide with those of
the corresponding expansion from Ref.@11#: the correct co-
efficient even for the third term is beyond the approximati
used in Ref.@11#.

In this paper, we adopt the method developed and
scribed in detail in our previous publications@13#. Only basic
notations and some important points are discussed here
a homogeneous system, the one-body density ma

^ĉ†(r1)ĉ(r2)& depends onr5r12r2, and, hence, its eigen
functions and eigenvalues are the plane waves exp(ip•r )/
AS and the occupation numbersnp5^âp

†âp&, respectively.
The Bose-Einstein condensate corresponds to the ma
scopic occupation numberN0, and the order parameter i

^ĉ(r )&5^â0&/AS5An0eix (n0 stands for the density of the
condensate!. In turn, the eigenfunctions of the two-body de
©2001 The American Physical Society05-1
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sity matrix ^ĉ†(r1)ĉ†(r2)ĉ(r28)ĉ(r18)& can be naturally clas
sified as follows. The maximum eigenvalueN0(N021)
;N0

2 corresponds to the state of two particles in the cond
sate; its eigenfunctionw(r )/S can be interpreted as a pa
wave functionin mediumof the condensate-condensate typ
The other macroscopic eigenvalues 2N0nq correspond to the
two-body states with one particle in the condensate and
other one beyond the condensate; its eigenfuncti
wq/2(r )exp@iq•(r11r2)/2#/S are of the condensate
supracondensate type, where\q is the total momentum o
the pair of bosons. The residuary nonmacroscopic eigen
ues are related to the supracondensate-supracondensate
and to bound ones provided the latter exist. The functi
w(r ) andwq/2(r ) can be chosen as real quantities given b

w~r !511c~r !, wp~r !5A2cos~p•r !1cp~r ! ~p5” 0!
~2!

with the boundary conditionsc(r ), cp(r )→0 at r→`. The
Fourier transforms of the scattering parts can be expresse
terms of the Bose operators:

c~k!5
^âkâ2k&

n0
, cp~k!5A S

2n0

^â2p
† âp1kâp2k&

n2p
. ~3!

With the help of the in-medium scattering amplitud
U(k)5*d2rw(r )V(r )exp@2ik•r # and Up(k)
5*d2rwp(r )V(r )exp@2ik•r #, the chemical potential reads

m5n0U~0!1A2E d2q

~2p!2
nqUq/2~q/2!. ~4!

Here we introduce a pairwise interaction potentialV(r ). It
should be emphasized that the formulas~3! and ~4!, derived
@13# within the Bogoliubov principle of the correlation weak
ening @5#, areexact. For a Bose gas, a system with a sm
condensate depletion (n2n0)/n!1, the pair distribution
function is expressed as

g~r !5S n0

n D 2

w2~r !12
n0

n E d2q

~2p!2

nq

n
wq/2

2 ~r !, ~5!

where the contribution of the supracondensa
supracondensate pair wave functions can be neglected
other restriction is the assumption that there are no bo
pair states in the medium@13#. In order to fulfil the latter
condition, it is sufficient to requireV(r ).0, and, as usually
V(r )→0 for r→`. In the framework of our scheme, th
following equations are validat sufficiently low densities
@13#:

nk5
1

2 S Tk1nU~k!

ATk
212nTkU~k!

21D , ~6!

c~k!52
1

2

U~k!

ATk
212nTkU~k!

, ~7!
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with Tk5\2k2/(2m). Equations~6! and ~7! look like those
of the modified Bogoliubov model where the ‘‘bare’’ pai
wise potentialV(k) is replaced by the effective oneU(k)
that is determined from the two-body Schro¨dinger equation.
However, in our method, there exists a key difference, wh
is of particular importance in two dimensions: Eq.~7! is a
self-consistentequation for the in-medium scattering amp
tudeU(k). Indeed, using the definition of the latter, Eq.~7!
can be represented in the Lippmann-Schwinger form

U~k!5V~k!2
1

2E d2q

~2p!2

V~ uk2qu!U~q!

ATq
212nTqU~q!

. ~8!

Besides, one can make use of the limiting relation@see Eq.
~2!# limp→0wp(r )5A2w(r ), which allows one to simplify
Eqs.~4! and ~5!

m5nU~0!@11~n2n0!/n1•••#, ~9!

g~r !5w2~r !@112~n2n0!/n1•••#. ~10!

Thus, our scheme is reduced to the following. First, o
should solve Eq.~8! and findU(0) @andw(r )# as a function
of the density atn→0. Second, the condensate depleti
(n2n0)/n should be determined from Eq.~6!. Third, em-
ploying these results, one should obtain the density exp
sion for the chemical potential~9! and the short-range behav
ior for the pair distribution function~10!. Note that in three
dimensions, this scheme is in excellent agreement with
data of Monte Carlo calculations for hard spheres~see the
last paper in Ref.@13#!.

In order to solve Eq.~8! at n→0, we employ the proce-
dure of linearization, which is similar to that in the 3D ca
@13#, and rewrite this equation in the form

U~k!5V~k!2
1

2
P.P.E d2q

~2p!2

V~ uk2qu!U~q!

Tq2Tq0

2
I

2
, ~11!

where P.P. denotes the Cauchy principal value, and

I 5P.P.E d2q

~2p!2 F V~ uk2qu!U~q!

ATq
212nTqU~q!

2
V~ uk2qu!U~q!

Tq2Tq0

G .

Here, we introduce the auxiliary quantity q0

5cA2mnU(0)/\, where c stands for an arbitrary dimen
sionless constant. Performing the ‘‘scaling’’ substitution

q5q8A2mnU~0!/\ ~12!

in the integral@U(0) is assumed to depend onn in such a
manner thatnU(0)→0 when n→0# and, then, taking the
zero-density limit in the integrand, forn→0, we find

I 52LV~k!, L5 ln~2c2!mU~0!/~2p\2!. ~13!

With the help of the Fourier transformation, Eq.~11! reads

w~r !512L1
m

4\2E d2r 8V~r 8!w~r 8!Y0~q0ur2r 8u!.
5-2
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BRIEF REPORTS PHYSICAL REVIEW E 64 027105
Here, the Fourier representation is usedY0(pr)
54/(2p)2P.P.*d2q exp@iq•r #/(p22q2) for the cylindrical
Bessel function of the second kind. Since only t
asymptotic ofw(r ) at n→0 is of interest, the linear integra
equation forw(r ) can be written with the asymptoticY0(z)
52 ln(zeg/2)/p1O(z2ln z), valid for z→0. Here g
.0.5772 stands for the Euler constant, and O(x) denotes
terms of the order ofx or even higher. It is seen from th
resulted equation that, first,w(r ) obeys the Schro¨dinger Eq.
~A1!, and, second, its asymptotic forr→` is

w~r !→12L1 ln~rq0eg/2!mU~0!/~2p\2!, ~14!

which differs from that of Eq.~A2! only by the multiplica-
tion factor mU(0)/(2p\2). Comparing Eq.~14! with Eq.
~A2! yields due to linearity of Eq.~A1!

w~r !52uw (0)~r !, ~15!

2 ln a52p\2~12L!/@mU~0!#1 ln~q0eg/2!, ~16!

where we introduce the parameteru by the definition

U~0!5E d2rw~r !V~r !5~4p\2/m!u. ~17!

With the help of Eq.~13! and the definition ofq0 ~see
above!, Eq. ~16! can be rewritten as

u5d~11u ln u!, d521/@ ln~na2p!12g#. ~18!

Note thatd→0 at n→0. As expected, the arbitrary consta
c is canceled and not involved in final Eq.~18! and, hence, in
the formula~15! for w(r ). Equation~18! has no solution for
u when d.1 and has two positive ones whend,1 ~i.e.,
whenna2,0.0369 . . . ). Thesolution with a greater value o
u should be ignored because of its unphysical behavior@u
;1/(na2) at n→0#. An expansion foru is obtained from Eq.
~18! by iterations

u5d1d2 ln d1d3 ln2 d1d3 ln d1O~d 4 ln2 d!. ~19!

Using Eq.~6!, one calculates the condensate depletion
means of the substitution~12! upon integrating

n2n0

n
5E d2q

~2p!2
nq5u1•••. ~20!

Thus, with the help of Eqs.~15!, ~17!, and ~20!, one can
rewrite Eqs.~9! and ~10! as

m5~4p\2n/m!u@11u1•••#, ~21!

g~r !5@w (0)~r !#24u2@112u1•••#. ~22!

Note that Eqs.~15! and ~22! are the short-range approxima
tion valid at r &1/An. For this reason, the boundary cond
tion ~2! is not fulfilled for w(r ) in Eq. ~15!. In order to obtain
the energy per particle«, we represent it in the form«
5(2p\2n/m) f (u) with an unknown functionf (u). From
Eq. ~18! it follows thatn]u/]n5u2/(12u), which, together
02710
y

with the thermodynamic relationm5](«n)/]n, yields the
differential equationu2df /du12(12u) f 52u(12u2). Us-
ing the initial conditionf (u50)50, we derive

«5~2p\2n/m!@u1u2/21O~u3!#. ~23!

With Eq. ~19!, « can be expanded in the parameterd

«5~2p\2n/m!@d1d2 ln d1d2/21d3 ln2 d12d3 ln d

1O~d3!#. ~24!

One can see that all the low-density expansions are serie
the dimensionless in-medium scattering amplitudeu, which
depends ultimately on the density via Eq.~18! @and, hence,
Eq. ~19!#; therefore,u can be considered asa parameter of
low-density expansions in two dimensions. The interaction
energy per particle is exactly related to the pair distribut
function ~22!

« int5
n

2E d2rV~r !g~r !5
2p\2na

m
@u212u31•••#, ~25!

where we put by definition

a5
m

p\2E d2r @w (0)~r !#2V~r !5
2

a

]a

]l
. ~26!

In the latter equation, we employ the theorem~A4! with the
coupling constantl @V(r )→lV(r ), and l51 in final for-
mulas#. Since« int can be directly evaluated via the relatio
~25!, our approach takes accurately into account the sh
range particle correlations@13#. Note that Eq.~25! can also
be obtained from the Hellmann-Feynman theorem« int
5l]«/]l with Eqs.~18!, ~23!, and~26!. Moreover, Eq.~22!
can be derived in the same manner varying the ene
g(r )5(2/n)d«/dV(r ). For the kinetic energy per particl
«kin5^(pi

2&/(2mN) we have

«kin5«2« int5
2p\2n

m Fu1S 1

2
2a Du21•••G . ~27!

It is seen from Eqs.~23!, ~25!, and ~27! that in the leading
order, proportional tonu, the total energy is purely kinetic
Thus, whatever a particular shape of the potentialV(r ), at
sufficiently small densities the energy becomes mostly
netic. By contrast, in three dimensions«kin.2p\2bn/m and
« int.2p\2(a2b)n/m are of the same order, wherea is the
3D scattering length andb5a2l]a/]l @13# ~except for
hard spheres whena5b, see Ref.@14#!.

Let us discuss the nature of the Schick approximat
«.22p\2n/(m ln na2), which is Eq.~24! in the lowest or-
der in n/ ln na2. As the energy in this order is purely kinetic
it cannot, in principle, be represented as a sum of the in
action energies of two particles over all pairs of bosons
analogy with the weak-coupling 3D Bose gas. However,
in three dimensions, we can start from Eq.~4! and putm
.n*d2rV(r )w(r ) with the in-mediumpair wave function
w(r ). It is clear thatw(r ) for r &r 0 ~herer 0;1/An is of the
order of the correlation length! should be proportional to the
5-3
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wave functionw (0)(r ) of the two-body problem~A1!: w(r )
.Cw (0)(r ). The boundary condition~2! can be fulfilled
only due to in-medium effectsfor r *r 0; therefore, we can
approximately put w(r 0).1 and use for r 0@a the
asymptotic~A2!. This leads toC.22/lnna2 and, by Eq.
~A3!, yieldsm.24p\2n/(m ln na2) and, hence, the Schic
result for «. The crucial difference in the 3D case is th
boundary condition for the two-body problemw (0)(r )→1
2a/r instead of Eq.~A2!. In this case, the conditionw(r 0)
.1 leads tow(r ).w (0)(r ) in the leading order, which re
sults in m.n*d3rV(r )w (0)(r )54p\2na/m, and, hence,«
.2p\2na/m.

Now one easily writes 2D Gross-Pitaevskii functional f
the energy using Eq.~23! in the leading order

E@f#5E d2r S \2u¹fu2

2m
1Vext~r !ufu21

2p\2

m
uufu4D ,

~28!

and 2D Gross-Pitaevskii equation

i\]f/]t5dE/df*

5@2~\2/2m!¹21Vext~r !#f1~4p\2u/m!ufu2f.
~29!

Here,f5f(r ,t)5^ĉ(r ,t)& is the order parameter with th
normalizationN5*d2r ufu2, andu is given by Eq.~18! with
n5ufu2. Upon varying in Eq.~29!, we neglect the variation
of u, for ufu4du/df* ;u2ufu2f. Note that the sum of the
first and third terms in Eq.~28! corresponds to thekinetic
energyof bosons according to Eq.~27!. Equations~28! and
~29! are more exact than those of Ref.@15#, based on the
Schick formula.

In conclusion, the expansions have been derived for
condensate depletion~20!, the chemical potential~21!, the
pair distribution function~22! for r &1/An, the total ~23!
ou

an
llo
de
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@and ~24!#, interaction~25! and kinetic ~27! energies. The
energy expansion~23! leads to the Gross-Pitaevskii func
tional ~28! and equation~29!.

This work was supported by the RFBR Grant No. 00-0
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APPENDIX

In this appendix, a useful variational theorem is prov
for 2D scattering length. Here we deal only with the sho
range potentials that go to zero forr→` as V(r )→1/r m

(m.2), or even faster. Thes-wave function corresponding
to the relative motion of two particles withp50 obeys the
two-body Schro¨dinger equation in the center-of-mass syste

2~\2/m!¹2w (0)~r !1V~r !w (0)~r !50 ~A1!

with the following boundary conditions: first,uw (0)(r )u,`
at r 50, and, second, forr→`

w (0)~r !→ ln~r /a!. ~A2!

Since the asymptotic is chosen to be real, the solution of
~A1! is also real. The introduced positive quantitya is called
2D scattering length. Integrating Eq.~A1! and keeping in
mind Eq.~A2! yield

2p\2/m5E d2r V~r !w (0)~r !. ~A3!

Let us suppose thatV(r ) is infinitesimally changed. Then
varying Eq. ~A1!, multiplying the obtained equation b
w (0)(r ), and carrying out the integration, one arrives at t
theorem

2p\2

m

da

a
5E d2r @w (0)~r !#2dV~r !. ~A4!
.B.
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