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Dilute Bose gas in two dimensions: Density expansions and the Gross-Pitaevskii equation
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A dilute homogeneous two-dimensiongD) Bose gas at zero temperature is studied with the method
developed earlier by the authors. This method allows for considering renormalization of an arbitrary pairwise
potential in a self-consistent manner, without the pseudopoteftfiahction representation. Low-density ex-
pansions are derived for the chemical potential, ground-state energy, pair distribution function, kinetic and
interaction energies. The expansion parameter is found to be a dimensionless in-medium scattering amplitude
u obeying the equation @A In u=—In(na2m)—2y, wherena? and y are the gas parameter and the Euler
constant, respectively. It is shown that the ground-state energy is mostly kinetic in the low-density limit. This
result does not depend on a specific form of the pairwise interaction potential, contrary to the 3D case. A new
form of the 2D Gross-Pitaevskii equation is proposed within our scheme.
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Theoretical investigation of two-dimensionéD) Bose ture, one can expect that our results, obtained for zero tem-
gas is of interest not only in itself but also from the point of perature, are also valid at least for the temperatlired . .
view of its possible experimental applications. Indeed, theBelow we consider the case of zero temperature only.
experimental observation of the Bose-Einstein quasiconden- The leading term of the energy expansiomit for a gas
sate of hydrogen atoms has been repoftgdOn the other  of hard discs was first obtained by Sch{&, who made use
hand, the discovery of the Bose-Einstein condensation ipf the Beliaev method9], developed for 3D Bose gas. Re-
magnetically trapped alkali-metal atorf® stimulated rapid  cenly, the Schick asymptotic formula has been proved rig-
progress in optical cooling and trapping of atoms. This,q,s1y[10]. To the best of our knowledge, there is only one
progress gives us hope that an experimental observation %per by Hine®t al. [11], where four next-to-leading terms
2D quasicondensation in the trapped atoms is a matter ’ ’
. . ) . L re eval 12]. However, th hors of Refll] em-
time[3]. Theoretically, the Bose-Einstein condensation is as- ere evaluated12]. However, the authors of Refil1] e

sociated with the off-diagonal long-range order, i.e., the nonployed thefirst-order Beliaev approximation for obtaining

Zer0 asymptotic at=|r,—r,|— (from the physical point the next-to-leadingterms, while in three dimensions, the

. . . second-ordeBeliaev approximation is needed for the same
of view atr>1/\n) for the one-body density matrix purpose. Following Schick, they ignored the imaginary part

R R R R of the Beliaev equation for the chemical potenfiedmpare

(W (r)(r2)) = (P (r))(e(rp)) #0. (1) Eq. (4.3 in Ref. [9] with Eq. (1) in Ref. [11]]. It is the
unphysical imaginary correction to the chemical potential
Here ;/,T(r) and &,(r) are the Bose field operatoré; - - ) that determines the range of validity of the first-order ap-
stands for the statistical average, a(nb(r)>=¢(r) is the proximation itself. One can easily demonstrate that in the 2D

case the correction is of the order vfin?(na); therefore,
order .pararrleterz.”As was show_n by Hohenbierfrom t.he that method cannot yield correct terms of the expansion in
Bogoliubov “1/g°” theorem[5], in the 2D case, there is no

X - this order and higher. At the same time, our mett&d]
off-diagonal long-range order at f"?'te temperatures due t%uccessfully reproduces in the 3D case the famous next-to-
t_he_ temperature long-range fluqtuatlon_s of the phase, and tl?@ading term for the chemical potential, which ensures that
"T‘?'t (.1) IS eq_ual to zero. In spite of this fac.t,.a phase ran-, v results are valid also in two dimensions. Thus, it be-
sition is possible to a superfluid state at sufficiently low tem-.imes clear why only the first two terms involved ,in our
peratureT [6]. At this Fempergture, the_: asymptotic behavior expansiorsee Eqs(18), (24) below] coincide with those of
of the one-body density matrix at— is changed from an

il d b q bel the corresponding expansion from REEL]: the correct co-
exponential decajaboveT,) to a power decaybelow Te)  efficient even for the third term is beyond the approximation
with respect tar, the phenomenon of the quasmondensanorhsed in Ref[11].

in two dimensions. For zero temperature, the lifdjtdiffers

from zero, and, hence, there exists the true Bc’Se'EmSte'gcribed in detail in our previous publicatiofis3]. Only basic

condensate. Assuming that the condensate does exiBt at,ations and some important points are discussed here. For
=0, in this paper, we consider low-density expansions for,

- a homogeneous system, the one-body density matrix
2D homogeneous Bose gas with respect to the gas parame%e;if(r Vil )) depends om=r;—r,, and, hence, its eigen-
na?, wheren=N/S is the densitya number of particles per ¢ 1 2 d P | 1 ﬁ I ’ 1S €19

unit area, anda stands for thewo-dimensionalkscattering unctions an elgenya ues are the pA?Pe wave3|p.>q))(/
length (see the Appendix Note that the density expansion VS and the occupation numbers, = (a,ay), respectively.

for the chemical potential is intimately related to a form of The Bose-Einstein condensate corresponds to the macro-
the Gross-Pitaevskii equation, a powerful tool for investigat-SCOpiC occupation numbeNo, and the order parameter is
ing a dilute inhomogeneous system of Bose partifldsAs  (4(r))=(a,)/VS= Vnee'X (n, stands for the density of the
the chemical potential is a continuous function of temperacondensate In turn, the eigenfunctions of the two-body den-

In this paper, we adopt the method developed and de-
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sity matrix (35 (r) 1 (r,) #(r3) #(r})) can be naturally clas- with Tkzhzik.2/(2m). Equations(6) and (7) look Ijke trlose.

sified as follows. The maximum eigenvalUdy(Ny— 1) of_ the modlfled Bogollubov model where thg bare” pair-

~N3 corresponds to the state of two particles in the conden?/'S€ potentlal_\/(k) is replaced by the ?ﬁ?Ct'Ve orld(}()
that is determined from the two-body ScHnoger equation.

sate; its eigenfunctiorp(r)/S can be interpreted as a pair . . . .
wave functionin mediumof the condensate-condensate type__However, in our method, there exists a key difference, which

The other macroscopic eigenvalue¥gh, correspond to the is of particular importance in two dimensions: Eg) is a

two-body states with one particle in the condensate and a _eIf-consistenéquation for the in?mt_adium scattering ampli-
other one beyond the condensate; its eigenfunction ude U(k). Indeed, using the definition of the latter, Hg)

oqar)extiq-(ry+1,)/2)/S are of the condensate- can be represented in the Lippmann-Schwinger form
supracondensate type, whefg is the total momentum of

2 _
the pair of bosons. The residuary nonmacroscopic eigenval- U(k)=V(k)— lf d*q  V(lk—ahU(a) _ (8)
ues are related to the supracondensate-supracondensate pairs 2) (2m)? \/qu+ 2nTqU(q)

and to bound ones provided the latter exist. The functions o
¢(r) and ¢q;(r) can be chosen as real quantities given by Besides, one can make use of the limiting relafisee Eq.
2] |impﬂo(pp(r)=\/§go(r), which allows one to simplify
e(N=1+4(r), p(r)=\2c08p-1)+yp(r) (p#0)  EGs.(4)and(5)
2

#=nU(0)[1+(n—ng)/n+---], 9
with the boundary conditiong(r), ¢,(r)—0 atr—c. The 5
Fourier transforms of the scattering parts can be expressed in g(r=¢“(N[1+2(n—ng)/n+---]. (10)

terms of the Bose operators: Thus, our scheme is reduced to the following. First, one

Apan should solve Eq(8) and findU(0) [and ¢(r)] as a function
¢(k):<a‘<a‘k> o(K) = /i<a2pap+kap‘k>_ 3) of the density atn—0. Second, the condensate depletion
ng P 2ng N2p (n—=ng)/n should be determined from E@6). Third, em-

] . ) ] ] ploying these results, one should obtain the density expan-
With the help of the in-medium scattering amplitudes sjon for the chemical potenti&) and the short-range behav-
U(K)=fd?ro(r)V(r)exd —ik-r] and Up(K)  jor for the pair distribution functior{10). Note that in three
= d?rp(r)V(r)exd —ik-r], the chemical potential reads dimensions, this scheme is in excellent agreement with the

o2 data of Monte Carlo calculations for hard sphe(sse the
q last paper in Ref{13]).
p=noU(0)+ \/Ef quuq/Z(q/Z)' 4) In order to solve Eq(8) atn—0, we employ the proce-
dure of linearization, which is similar to that in the 3D case
Here we introduce a pairwise interaction potentigr). It ~ [13l, and rewrite this equation in the form

should be emphasized that the formu(@sand(4), derived 5
[13] within the Bogoliubov principle of the correlation weak- U(K)=V(K)— %P.P.j d“q V(lk=ghU(a) ! (11)

ening[5], areexact For a Bose gas, a system with a small (27)? Tq—Tqo 2’
condensate depletionn{-ng)/n<1, the pair distribution
function is expressed as where P.P. denotes the Cauchy principal value, and
_[(mo)? , +2noJ' d’q nq , : |=pr d*q | V(k=ahU(q) V(k=a))U(a)
g(r)= Tl ® (r) n (ZT)ZFGDq/Z(T), 5 s (27)2 \/T§+2anU(q) Tq_qu :

where the contributon of the supracondensatefiere, we introduce the auxiliary quantity do
supracondensate pair wave functions can be neglected; am-Cv2mnU(0)/%, wherec stands for an arbitrary dimen-
other restriction is the assumption that there are no boungionless constant. Performing the “scaling” substitution
pair states in the mediufil3]. In order to fulfil the latter )

condition, it is sufficient to requir®/(r)>0, and, as usually, q=0'v2mnU(0)/% (12
V(r)—0 for r—c. In the framework of our scheme, the
following equations are valicat sufficiently low densities
[13]:

in the integrallU(0) is assumed to depend onin such a
manner thanU(0)—0 whenn—0] and, then, taking the
zero-density limit in the integrand, for—0, we find

1/ TetnU(k) I=2AV(k), A=In(2c®>)mU(0)/(274?). (13

"2 om0

With the help of the Fourier transformation, Ed1) reads

w(k)=—1Lk), (7 (r)—l—A+1fd2r'V(r’) (r'")Yo(qolr—r’]
2 T anTulo PTE PTG
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Here, the Fourier representation is usedy(pr)
=4/(2m)%P.Pfd’q exdiq-r]/(p?—q?) for the cylindrical

PHYSICAL REVIEW E 64 027105

with the thermodynamic relatiop.= d(en)/dn, yields the
differential equationu?df/du+2(1—u)f=2u(1—u?). Us-

Bessel function of the second kind. Since only theing the initial conditionf(u=0)=0, we derive

asymptotic ofeo(r) atn—0 is of interest, the linear integral
equation fore(r) can be written with the asymptotit,(z)
=21In(ze/2)/7m+0(Z%InZ), valid for z—0. Here y
=0.5772 stands for the Euler constant, andxO@enotes
terms of the order ok or even higher. It is seen from the
resulted equation that, firsg(r) obeys the Schdinger Eq.
(A1), and, second, its asymptotic for-« is

o(r)—1—A+In(rgee’/2)mu(0)/(27h?), (149
which differs from that of Eq(A2) only by the multiplica-
tion factor mU(0)/(27#2). Comparing Eq.(14) with Eq.
(A2) yields due to linearity of Eq(AL)

¢(r)=2ue(r), (15

—Ina=2mh?%(1—A)/[[mU(0)]+In(qee’/2), (16)
where we introduce the parameteby the definition

U(0)=J' d’ro(r)V(r)=(4mh?/myu. (17

With the help of Eq.(13) and the definition ofg, (see
above, Eq. (16) can be rewritten as

u=48(1+ulnu), &=-1[In(na?m)+2y]. (18

Note that6—0 atn—0. As expected, the arbitrary constant

cis canceled and not involved in final E{.8) and, hence, in
the formula(15) for ¢(r). Equation(18) has no solution for
u when §>1 and has two positive ones wheix1 (i.e.,
whenna?<0.03® . . .). Thesolution with a greater value of
u should be ignored because of its unphysical behguior
~1/(na?) atn—0]. An expansion fou is obtained from Eq.
(18) by iterations

u=6+58°In6+8%In? 6+ 8%In 6+0(5%1In? 8). (19

e=(2mh2n/m)[u+u2/2+O(u®)]. (23)

With Eq. (19), e can be expanded in the paramefer
e=(2mh’n/m)[ 6+ 6%In 6+ 8212+ 8%In? 5+28°In 8
+0(8%)]. (24)

One can see that all the low-density expansions are series in
the dimensionless in-medium scattering amplitug@vhich
depends ultimately on the density via Ed8) [and, hence,

Eq. (19)]; therefore,u can be considered asparameter of
low-density expansions in two dimensiofifie interaction
energy per particle is exactly related to the pair distribution
function (22)

n 27h2na
sim=—JdzrV(r)g(r)=—[u2+2u3+~-~], (25)
2 m
where we put by definition
m 2 da
— 27 5 (0)( 172 ==
a whzf dor[ o™(r)]°V(r) N (26)

In the latter equation, we employ the theoréfal) with the
coupling constanh [V(r)—AV(r), and\=1 in final for-
mulag. Sinceeg;, can be directly evaluated via the relation
(25), our approach takes accurately into account the short-
range particle correlationd 3]. Note that Eq.(25) can also

be obtained from the Hellmann-Feynman theorem,
=N\deldN with Egs.(18), (23), and(26). Moreover, Eq(22)

can be derived in the same manner varying the energy:
g(r)=(2/n) 8/ 6V(r). For the kinetic energy per particle
erin=(=p?)/(2mN) we have

27h%n

EkinT €~ Eint—

1
T

u+ u4 -
2

(27)

Using Eq.(6), one calculates the condensate depletion by

means of the substitutiof12) upon integrating

.

Thus, with the help of Eqgs(15), (17), and (20), one can
rewrite Egs.(9) and(10) as

d’q

I’]—I’IO N
SNg=u+
(2m)

n

(20

w=(4mh2n/mu[l+u+---], (22)

a(n=[eO(r)]?4ui1+2u+---]. (22

Note that Eqs(15) and(22) are the short-range approxima-
tion valid atr<1/Jn. For this reason, the boundary condi-
tion (2) is not fulfilled for ¢(r) in Eq.(15). In order to obtain
the energy per particle, we represent it in the fornz
=(27h?n/m)f(u) with an unknown functionf(u). From
Eq. (18) it follows thatndu/dn=u?/(1—u), which, together

It is seen from Eqs(23), (25), and (27) that in the leading
order, proportional tau, the total energy is purely kinetic.
Thus, whatever a particular shape of the poten¥i@d), at
sufficiently small densities the energy becomes mostly ki-
netic. By contrast, in three dimensioag,=2#%?bn/m and
ein=2mh?(a—b)n/m are of the same order, wheaeis the

3D scattering length antb=a—\da/dn [13] (except for
hard spheres whea=b, see Ref[14]).

Let us discuss the nature of the Schick approximation
e=—2mh?n/(mInn&?), which is Eq.(24) in the lowest or-
der inn/Inna. As the energy in this order is purely kinetic,
it cannot, in principle, be represented as a sum of the inter-
action energies of two particles over all pairs of bosons by
analogy with the weak-coupling 3D Bose gas. However, as
in three dimensions, we can start from Ed) and putu
=nfd?rV(r)e(r) with the in-mediumpair wave function
o(r). Itis clear thate(r) for r=<r, (herer,~1/y/n is of the
order of the correlation lengttshould be proportional to the
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wave functione©(r) of the two-body problentAl): ¢(r) [and (24)], interaction(25) and kinetic(27) energies. The
=C¢O(r). The boundary conditio2) can be fulfilled energy expansiori23) leads to the Gross-Pitaevskii func-
only due to in-medium effecter r=r; therefore, we can tional (28) and equatiorn(29).

approximately put ¢(rg)=1 and use forry>a the .

asymptotic(A2). This leads toC~—2/Inne and, by Eq. 17IQ|15 work was supported by the RFBR Grant No. 00-02-
(A3), yields u=—4=7A?n/(mInna?) and, hence, the Schick '
result for e. The crucial difference in the 3D case is the
boundary condition for the two-body problegf(®(r)—1
—a/r instead of Eq(A2). In this case, the condition(r o) In this appendix, a useful variational theorem is proved
=1 leads tog(r)=¢(r) in the leading order, which re- for 2D scattering length. Here we deal only with the short-
sults in u=nfd*rV(r)e®(r)=4n#i?na/m, and, hences  range potentials that go to zero for- as V(r)—1/™

APPENDIX

=2mh?na/m. (m>2), or even faster. The-wave function corresponding
Now one easily writes 2D Gross-Pitaevskii functional for to the relative motion of two particles with=0 obeys the
the energy using Eq23) in the leading order two-body Schidinger equation in the center-of-mass system
12|V ¢|? 2mh? (%2 2,,(0) (0)py—
E[¢]:f dzr( |2m¢| VDl 2 g4, (#IMVZeO(1)+V(Ne®(r)=0 (A1)

(28)  Wwith the following boundary conditions: firste(®)(r)[ <
atr=0, and, second, far—o
and 2D Gross-Pitaevskii equation
#O(r)=In(r/a). (A2)
ihdplot= SEl Sp*
Since the asymptotic is chosen to be real, the solution of Eq.
=[—(h212Mm)V?+ V(1) ]+ (47h2u/m)| |2 . (A1) is also real. The introduced positive quantitjs called
(29 2D scattering length. Integrating E¢A1) and keeping in
A mind Eq.(A2) yield
Here, ¢p= ¢(r,t)=(4(r,t)) is the order parameter with the
normalizationN = [ d?r|¢|?, andu is given by Eq.(18) with
n=|¢|2. Upon varying in Eq(29), we neglect the variation
of u, for |¢|*6ul 5¢* ~u?|p|?h. Note that the sum of the
first and third terms in Eq(28) corresponds to th&inetic ~ Let us suppose tha¥(r) is infinitesimally changed. Then,
energyof bosons according to E427). Equations(28) and  varying Eg. (Al), multiplying the obtained equation by
(29) are more exact than those of Rgt5], based on the ¢©(r), and carrying out the integration, one arrives at the

2wﬁ2/m:f d?r V(r)e©xr). (A3)

Schick formula. theorem
In conclusion, the expansions have been derived for the 072 5
condensate depletiofR0), the chemical potential21), the K a
ndensate depletiof20) potentiai21) —=f d2r[e©@(r)]28V(r). (A4)
pair distribution function(22) for r<1/{n, the total (23 m a
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